Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G446-G452, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697930

RESUMO

Intestinal inflammation and diarrhea are often associated with SARS-CoV-2 infection. The angiotensin converting enzyme 2 (ACE2) receptor plays a key role in SARS-CoV-2 pathogenesis, facilitating entry of the virus into epithelial cells, while also regulating mucosal inflammatory responses. Here, we investigated roles for the nuclear bile acid receptor farnesoid X receptor (FXR) in regulating ACE2 expression and virally mediated inflammatory responses in intestinal epithelia. Human colonic or ileal enteroids and cultured T84 and Caco-2 monolayers were treated with the FXR agonists, obeticholic acid (OCA) or GW4064, or infected with live SARS-CoV-2 (2019-nCoV/USA_WA1/2020). Changes in mRNA, protein, or secreted cytokines were measured by qPCR, Western blotting, and ELISA. Treatment of undifferentiated colonic or ileal enteroids with OCA increased ACE2 mRNA by 2.1 ± 0.4-fold (n = 3; P = 0.08) and 2.3 ± 0.2-fold (n = 3; P < 0.05), respectively. In contrast, ACE2 expression in differentiated enteroids was not significantly altered. FXR activation in cultured epithelial monolayers also upregulated ACE2 mRNA, accompanied by increases in ACE2 expression and secretion. Further experiments revealed FXR activation to inhibit IL-6 release from both Caco-2 cells infected with SARS-CoV-2 and T84 cells treated with the viral mimic, polyinosinic:polycytidylic acid, by 46 ± 12% (n = 3, P < 0.05) and 35 ± 6% (n = 8; P < 0.01), respectively. By virtue of its ability to modulate epithelial ACE2 expression and inhibit virus-mediated proinflammatory cytokine release, FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2.NEW & NOTEWORTHY Activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), specifically upregulates ACE2 expression in undifferentiated colonic epithelial cells and inhibits virus-induced proinflammatory cytokine release. By virtue of these actions FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interleucina-6 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Células CACO-2 , Citocinas , Interleucina-6/metabolismo , RNA Mensageiro , SARS-CoV-2 , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
J Biol Chem ; 298(11): 102569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209824

RESUMO

The nuclear bile acid receptor, farnesoid X receptor (FXR), is an important regulator of intestinal and metabolic function. Previous studies suggest that pentacyclic triterpenes (PCTs), a class of plant-derived bioactive phytochemical, can modulate FXR activity and may therefore offer therapeutic benefits. Here, we investigated the effects of a prototypical PCT, hederagenin (HG), on FXR expression, activity, and antisecretory actions in colonic epithelial cells. T84 cells and murine enteroid-derived monolayers were employed to assess HG effects on FXR expression and activity in colonic epithelia. We measured mRNA levels by qRT-PCR and protein by ELISA and immunoblotting. Transepithelial Cl- secretion was assessed as changes in short circuit current in Ussing chambers. We determined HG treatment (5-10 µM) alone did not induce FXR activation but significantly increased expression of the receptor, both in T84 cells and murine enteroid-derived monolayers. This effect was accompanied by enhanced FXR activity, as assessed by FGF-15/19 induction in response to the synthetic, GW4064, or natural FXR agonist, chenodeoxycholic acid. Effects of HG on FXR expression and activity were mimicked by another PCT, oleanolic acid. Furthermore, we found FXR-induced downregulation of cystic fibrosis transmembrane conductance regulator Cl- channels and inhibition of transepithelial Cl- secretion were enhanced in HG-treated cells. These data demonstrate that dietary PCTs have the capacity to modulate FXR expression, activity, and antisecretory actions in colonic epithelial cells. Based on these data, we propose that plants rich in PCTs, or extracts thereof, have excellent potential for development as a new class of "FXR-targeted nutraceuticals".


Assuntos
Ácido Quenodesoxicólico , Colo , Camundongos , Animais , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Colo/metabolismo , Ácido Quenodesoxicólico/farmacologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 322(4): G405-G420, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170355

RESUMO

One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.


Assuntos
Diarreia , Secreções Intestinais , Diarreia/metabolismo , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos , Água
4.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G201-G222, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755536

RESUMO

Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Humanos , Canais Iônicos/agonistas , Receptores de Calcitriol/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos
6.
Int J Pharm ; 604: 120717, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015378

RESUMO

Our recent study showed that novel infliximab (INF) loaded polyesterurethane (INF-PU) and INF-PU-PEG particulate formulations reduced inflammation in an in-vitro epithelial inflammation model. In this study we investigated therapeutic potential of novel INF-PU and INF-PU-PEG particulate formulations to reduce inflammation in a dextran sodium sulfate (DSS) induced murine model of colitis. Severity of colitis was assessed by measurement of disease activity index (DAI) score, inflammatory markers (neutrophil infiltration, TNFα) and histological score. Treatment groups orally administered with INF-PU and INF-PU-PEG particulate formulations showed improvement in the clinical signs of colitis, similar to that observed with intraperitoneally administered INF, in both, moderate and severe DSS induced colitis model. This was related to a significant reduction in inflammatory cytokines, resulting in a significant reduction in histological score (ANOVA; p < 0.05), indicative of mucosal healing, a key goal of IBD therapy. This could be attributed to its targeted delivery to the inflamed colon and higher permeation of these particulate formulations across the inflamed colonic mucosa, as observed by the confocal images, resulting in local inhibition of TNFα at its site of production. These promising preliminary results warrant further investigation of orally administered INF and its novel particulate formulations in a wider preclinical study.


Assuntos
Colite , Poliuretanos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Infliximab , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL
7.
Microorganisms ; 9(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807488

RESUMO

Bile salt hydrolase (BSH) and penicillin V acylase (PVA) are related enzymes that are classified as choloylglycine hydrolases (CGH). BSH enzymes have attracted significant interest for their ability to modulate the composition of the bile acid pool, alter bile acid signaling events mediated by the host bile acid receptors FXR and TGR5 and influence cholesterol homeostasis in the host, while PVA enzymes have been widely utilised in an industrial capacity in the production of semi-synthetic antibiotics. The similarities between BSH and PVA enzymes suggest common evolution of these enzymes and shared mechanisms for substrate binding and catalysis. Here, we compare BSH and PVA through analysis of the distribution, phylogeny and biochemistry of these microbial enzymes. The development of new annotation approaches based upon functional enzyme analyses and the potential implications of BSH enzymes for host health are discussed.

8.
Biochim Biophys Acta Biomembr ; 1863(7): 183619, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811845

RESUMO

The human colon balances water and electrolyte absorption and secretion while also forming a barrier protecting the body from the entry of harmful components. Aquaporin-3 (AQP3) is a water, glycerol and H2O2 transporting channel expressed in colonic epithelia. Although expression of colonic epithelial AQP3 is altered in several intestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, the regulation and specific roles of AQP3 remain to be fully defined. In this mini-review, we summarize the current understanding of the expression, regulation, and biological functions of AQP3 protein in colonic epithelia concerning intestinal absorption, secretion and barrier function.


Assuntos
Aquaporina 3/metabolismo , Colo/metabolismo , Aquaporina 3/genética , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Modelos Biológicos , Água/metabolismo
9.
Physiol Rep ; 8(12): e14456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32562381

RESUMO

Increased epithelial permeability is a key feature of IBD pathogenesis and it has been proposed that agents which promote barrier function may be of therapeutic benefit. We have previously reported the secondary bile acid, ursodeoxycholic acid (UDCA), to be protective in a mouse model of colonic inflammation and that its bacterial metabolism is required for its beneficial effects. The current study aimed to compare the effects of UDCA, LCA, and a non-metabolizable analog of UDCA, 6-methyl-UDCA (6-MUDCA), on colonic barrier function and mucosal inflammation in a mouse model of colonic inflammation. Bile acids were administered daily to C57Bl6 mice by intraperitoneal injection. Colonic inflammation, induced by addition of DSS (2.5%) to the drinking water, was measured as disease activity index (DAI) and histological score. Epithelial permeability and apoptosis were assessed by measuring FITC-dextran uptake and caspase-3 cleavage, respectively. Cecal bile acids were measured by HPLC-MS/MS. UDCA and LCA, but not 6-MUDCA, were protective against DSS-induced increases in epithelial permeability and colonic inflammation. Furthermore, UDCA and LCA inhibited colonic epithelial caspase-3 cleavage both in DSS-treated mice and in an in vitro model of cytokine-induced epithelial injury. HPLC-MS/MS analysis revealed UDCA administration to increase colonic LCA levels, whereas LCA administration did not alter UDCA levels. UDCA, and its primary metabolite, LCA, protect against intestinal inflammation in vivo, at least in part, by inhibition of epithelial apoptosis and promotion of barrier function. These data suggest that clinical trials of UDCA in IBD patients are warranted.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Ácido Litocólico/farmacologia , Substâncias Protetoras/farmacologia , Ácido Ursodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Colagogos e Coleréticos/farmacologia , Detergentes/farmacologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
10.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G872-G881, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509435

RESUMO

The secondary bile acid ursodeoxycholic acid (UDCA) has long been known to have medicinal properties. As the therapeutically active component of bear bile, it has been used for centuries in traditional Chinese medicine to treat a range of conditions, while manufactured UDCA has been used for decades in Western medicine to treat cholestatic liver diseases. The beneficial qualities of UDCA are thought to be due to its well-established cytoprotective and anti-inflammatory actions. In addition to its established role in treating liver diseases, UDCA is now under investigation for numerous conditions associated with inflammation and apoptosis, including neurological, ocular, metabolic, and cardiovascular diseases. Here, we review the growing evidence base from in vitro and in vivo models to suggest that UDCA may also have a role to play in the therapy of inflammatory bowel diseases.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Ácido Ursodesoxicólico/farmacologia , Animais , Fármacos Gastrointestinais/farmacologia , Humanos , Modelos Teóricos
11.
Physiol Rev ; 98(4): 1983-2023, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067158

RESUMO

Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.


Assuntos
Ácidos e Sais Biliares/metabolismo , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos
12.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G378-G387, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351391

RESUMO

The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl- channels, whereas inhibition of CFTR activity with either CFTR-inh-172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes wound healing, suggesting it may provide an alternative approach to prevent the losses of barrier function that are associated with mucosal inflammation in IBD patients.


Assuntos
Colo/efeitos dos fármacos , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
13.
FASEB J ; 31(9): 3848-3857, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487283

RESUMO

Bile acids and epithelial-derived human ß-defensins (HßDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HßD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HßD1 and HßD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HßD1 and HßD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 µM), but not by the farnesoid X receptor agonist, GW4064 (10 µM). INT-777 also stimulated colonic HßD1 and HßD2 release from wild-type, but not Takeda GPCR 5-/-, mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 µM), inhibited DCA-induced HßD2, but not HßD1, release. We conclude that bile acids can differentially regulate colonic epithelial HßD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human ß-defensin-1 and -2 secretion by colonic epithelial cells.


Assuntos
Colo/citologia , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/citologia , Ácido Ursodesoxicólico/farmacologia , beta-Defensinas/metabolismo , Animais , Linhagem Celular , Ácido Desoxicólico/administração & dosagem , Relação Dose-Resposta a Droga , Células Epiteliais , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Técnicas de Cultura de Tecidos , Ácido Ursodesoxicólico/administração & dosagem , beta-Defensinas/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G550-G558, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360029

RESUMO

Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1ß, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Ácido Litocólico/farmacologia , Ácido Ursodesoxicólico/farmacologia , Animais , Bactérias/metabolismo , Biotransformação , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/metabolismo
16.
Front Nutr ; 3: 46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777930

RESUMO

In normal individuals, the epithelium of the colon absorbs 1.5-2 l of water a day to generate dehydrated feces. However, in the condition of bile acid malabsorption (BAM), an excess of bile acids in the colon results in diarrhea. Several studies have attempted to address the mechanisms contributing to BAM induced by various bile acids. However, none have addressed a potential dysregulation of aquaporin (AQP) water channels, which are responsible for the majority of transcellular water transport in epithelial cells, as a contributing factor to the onset of diarrhea and the pathogenesis of BAM. In this study, we aimed to systematically analyze the expression of AQPs in colonic epithelia from rat, mouse, and human and determine whether their expression is altered in a rat model of BAM. Mass spectrometry-based proteomics, RT-PCR, and western blotting identified various AQPs in isolated colonic epithelial cells from rats (AQP1, 3, 4, 7, 8) and mice (AQP1, 4, 8). Several AQPs were also detected in human colon (AQP1, 3, 4, 7-9). Immunohistochemistry localized AQP1 to the apical plasma membrane of epithelial cells in the bottom of the crypts, whereas AQP3 (rat, human) and AQP4 (mice, human) were localized predominantly in the basolateral plasma membrane. AQP8 was localized intracellularly and at the apical plasma membrane of epithelial cells. Rats fed sodium cholate for 72 h had significantly increased fecal water content, suggesting development of BAM-associated diarrhea. Colonic epithelial cells isolated from this model had significantly altered levels of AQP3, 7, and 8, suggesting that these AQPs may be involved in the pathogenesis of bile acid-induced diarrhea.

17.
Am J Physiol Gastrointest Liver Physiol ; 311(2): G334-41, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340129

RESUMO

Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 µg/ml) for 24 h, in the absence or presence of UDCA (25-100 µM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD.


Assuntos
Imunossupressores/farmacologia , Interleucina-8/metabolismo , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ácido Ursodesoxicólico/farmacologia , Regulação da Expressão Gênica , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Interleucina-8/genética , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Células U937
18.
Cell Mol Gastroenterol Hepatol ; 2(6): 725-732, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28174746

RESUMO

Diarrhea is a feature of several chronic intestinal disorders that are associated with increased delivery of bile acids into the colon. Although the prevalence of bile acid diarrhea is high, affecting approximately 1% of the adult population, current therapies often are unsatisfactory. By virtue of its capacity to inhibit colonic epithelial fluid secretion and to down-regulate hepatic bile acid synthesis through induction of the ileal fibroblast growth factor 19 release, the nuclear bile acid receptor, farnesoid X receptor, represents a promising target for the development of new therapeutic approaches. Here, we review our current understanding of the pathophysiology of bile acid diarrhea and the current evidence supporting a role for farnesoid X receptor agonists in treatment of the disease.

19.
Am J Physiol Lung Cell Mol Physiol ; 307(5): L407-18, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24993131

RESUMO

Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 µM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.


Assuntos
Ácidos e Sais Biliares/farmacologia , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Sistema Respiratório/metabolismo , Western Blotting , Células Cultivadas , Canais de Cloreto/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletrofisiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Physiol ; 592(12): 2473-89, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24710059

RESUMO

The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed.


Assuntos
Mucosa Intestinal/metabolismo , Oxigênio/fisiologia , Animais , Transporte Biológico , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Circulação Esplâncnica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...